产生高阶相干喇曼辐射的两种不同 物理机制的研究

源散射杀14。之间,还可

赫光生 周福新 刘 盾 刘颂豪 (中国科学院上海光机所)

提要:研究了受激喇曼散射(SRS)实验中观察到的高阶相干喇曼辐射的两种不同成因。一种是级联(多阶)受激喇曼散射过程,另一种是喇曼共振增强的四波混频 (四光子参量)过程,以方解石样品为例所作判断实验结果表明,上述两种物理过程既 可先后分别产生,亦可同时发生。

Study on two physical machanisms for high order coherent Raman radiation

He Guangsheng, Zhou Fuxin, Liu Dun, Liu Songhao (Shanghai Institute of Optics and Fine Mechanics, Academia Sinica)

Abstract: High order coherent Raman radiation caused by two different mechanisms in the stimulated Raman scattering experiments have been studied. One is the cascade stimulated scattering process, the other is Raman-resonance enhanced four-wave mixing which is characterized by phase matching condition and causes a hollow ring distribution in the nearfield. Experimental results judgement using calcite sample have shown that these two physical processes can appear separately or simultaneously depending on the experimental conditions.

一、引有,前高前款(根用);

在很多以有机液体、晶体、高压气体、光 纤等介质作样品的受激喇曼散射(SRS)实验 中,当入射光强水平较高时,常可以观察到与 样品同一喇曼模频移值相对应的多阶等频率 间隔的斯托克斯与反斯托克斯相干辐射成 分。尽管有许多文献报道了对上述光谱结构、 空间场图分布以及时间特性的实验研究结 果,但由于它们不是在同一工作中或同一实 验条件下获得的,因此对其产生的物理机制 理解并不尽一致。下面报道我们的实验结果 和对这个问题的看法。

二、产生高阶相干喇曼辐射的 两种不同物理机制

1. 级联受激喇曼散射过程

收稿日期: 1984年11月27日。

今回 南方

笆 13 岩

在以强激光激励的受激喇曼散射实验 中, 当入射激光足够强或喇曼介质增益长度 足够长时,可通过级联受激喇曼散射过程而 逐级产生高阶斯托克斯或反斯托克斯受激散 射。由于在这个过程的始末, 散射中心的内 部能量状态发生了变化,故两个参与作用的 光子的能量与动量不再守恒, 这意味着在入 射光波与散射光波之间并不要求满足相位匹 配条件。但另一方面, 它要求满足明显的阈 值条件。设入射激光单次通过散射介质,频 率为 vo, 光强为 I(vo), 且它在介质内沿行进 方向上的相对光强变化可以忽略,则产生一 级斯托克斯受激散射必须满足的阈值光强条 件为[1]

$$I(\nu_0) \ge \frac{\alpha h c \Delta \nu_0}{N \sigma \lambda_0^3} \tag{1}$$

式中α为介质对入射光的指数衰减系数(单 位为 cm⁻¹), h 为 普 朗 克 常 数, c 为 光 速, 三、实验装置与条件 Δνo 为入射光光谱宽度, N 为单位体积内处 于基态上的散射分子数, σ为介质微分 喇曼 散射截面(单位为 cm²/球 面 度), 由上式可 看出, 阈值入射光强与入射光波长三次方成 反比。因此尽管所产生的一级斯托克斯受激 散射光强 I(vs1)与入射光强 I(vo)相比可能 较小,但在一定激励水平下,它仍然有可能进 一步满足如下条件

$$I(\nu_{s1}) \geq \frac{\alpha h c \Delta \nu_{s1}}{N \sigma \lambda_{s1}^3}$$
(2)

从而产生出二级斯托克斯受激散射光。以此 类推,只要入射光强和受激散射转换效率足 够高,就有可能通过上述级联过程产生更高 阶的受激散射。这种过程的最大特点是各阶 受激散射通常均沿与入射光相同的方向上产 生(共线作用),因为只有在这些方向上才能 获得最大作用长度。与此相应,当入射光是 以聚焦光束方式通过散射介质时,各阶前向 受激散射光的近场图分布应与入射光近场图 分布基本相同,亦即应呈现实心圆斑状分布。

2. 多重四波混频过程

在一般的受激喇曼散射实验条件下,入

射光vo与已经产生的前向一级斯托克斯受 激散射光 vs1之间,还可通过四波混频作用产 生一级反斯托克斯相干辐射 vast 和二级斯托 克斯相干辐射vs2 等;而所产生的新的相干光 场,又可与仍然是较强的 vo 或 vst 之间进一 步发生四波混频作用而产生更高阶的相干喇 曼辐射,如2022,2033、203 等。由于在其单元过程 的始末,不涉及介质分子内部能量与动量状 态的改变,因此要求参与四波混频过程的四 个光场满足相位匹配或波矢匹配条件。在本 文下面所要叙述的实验中,由于聚焦入射激 光在散射介质内的会聚角范围足够大,因此 在原则上有多种通过四波混频过程而产生。 与此相应,在通过散射介质后的近场图上,可 看到多种不同角度和光谱成份不同的圆环状 相干辐射。

inerent

主要实验装置如图1所示。 YAG 激光 器由振荡器和一级放大器所组成; 其中振荡 器是采用非稳腔结构和 BDN 染料片调Q. 脉冲重复率为1次/s。由放大器输出的脉冲 激光的能量约为50mJ,脉冲宽度约为8ns。 上述1.06 µm 红外激光辐射以第 II 类角度 匹配方式通过一块长约为5cm的 KDP 晶 体, 倍频效率约为(15~20)%, 产生的 0.53 μm 倍频光的谱线宽度约为 0.05 cm⁻¹, 发散 角约1mrad. 光束宽度5~6mm。

方解石晶体经过光学加工后制成长方体 状, 通光长度为25mm, 晶体光轴平行于入 射(和出射)端面而垂直于入射光束方向。在 聚焦前的入射光路中置放一块圆盘状镀膜式 阶梯衰减板,可逐级改变入射光强水平;经过 YAG YAG $f = 15 \,\mathrm{cm}$

衰减后的入射光用一台灵敏度为0.05 mJ的 数字显示式能量计检测,光场的偏振状态采 用一块格兰棱镜进行检测。由方解石晶体产 生的各阶相干喇曼辐射的近场分布,通过一 个距样品 25 cm 的描图纸屏进行取样;然后 采用 Kodak-II 型彩色负片和选通滤光片进 行分色照相记录;由样晶输出的各阶相干辐 射的光谱成分;由1m光栅摄谱仪或者单色 仪进行检测记录。

四、主要实验结果及其解释

1. 一级 SRS 产生阈值对偏振状态的依赖性

实验所使用的 532 nm 入射光基本 为线 偏振光。改变方解石样品的取向,使入射光 以寻常光偏振方式按垂直于光轴的方向入射 时,产生前向一级受激喇曼散射 vat 所必须的 阈值能量约为1mJ,对应于焦点处的入射光 功率密度约为0.7×10⁹ W/cm³。若入射光以 非寻常光偏振方式按垂直于光轴的方向入 射,阈值能量将提高到约2.5mJ,对应焦点 处的光功率密度约为1.75×10⁹ W/cm³。即 e 光的 SRS 阈值约为 o 光的2.5倍,以上实 验结果的相对测量误差约为10%。本文以 下所述各项实验结果,均是在入射光以 o 光 形式入射情况下得到的;文中所涉及到的各 级受激散射和四波混频所产生的各阶环状相 干辐射的偏振状态,亦均为 o 光。

2. 前向与后向 SRS 的对称性

实验测量结果表明,前向与后向一级和 二级斯托克斯受激喇曼散射的阈值和近场图 分布基本相同,这与本文前面一节所作分析 相符合。因为实验所使用的八射光时间宽度 和光谱宽度,可认为入射光脉冲波列的相干 长度远远大于样品作用长度。故前向与后向 SRS 的出现特性理应基本相同。

3. v_{s2}相干辐射圆环以及受激散射圆斑的出现次序

实验观察与彩色分色照相记录均表明, 当前向vs1 受激散射出现后,再稍为增加一下 入射光强,例如将入射脉冲光能量增加到 1.3Eo 左右,即可在前向明显观察到二级斯 托克斯(vs2)相干辐射环的出现,在此基础上, 若进一步增加入射光强到一定程度,则可突 然观察到前向vsa 受激散射圆斑的出现,此时 所要求的阈值入射光脉冲能量约为2Eo左 右。图2(a)为入射光能约为1.3E。左右时, 通过方解石样品输出的相干辐射的近场图 (取样距离25cm)的彩色照片,从图中可 看出呈实心圆斑状的λo=532 nm 绿色入射 光,前向一级斯托克斯受激散射光(As1= 564.6nm 之黄色圆斑)以及呈圆环状的二级 斯托克斯相干辐射光 (λs2=601.5nm之红 色圆环); 图2(b)为同样条件下经过红色宽 带滤光片拍摄的近场图照片,从中可看出只 存在空心圆环状的λs2辐射;图2(c)为入射 光能进一步增加到约等于2Eo水平时,通过 宽带红色滤光片拍摄到的近场图照片,从中 可看出除圆环状 ٧ 32 辐射外,还出现实心圆 环状的红色辐射。

光谱分光测量表明,该实心圆斑为前向 二级斯托克斯受激散射(λ_{s2}=601.5 nm)。

以上实验结果表明,同是二级斯托克斯 (ν_{s2})相干喇曼辐射(空心环和实心圆),其出 现条件和表现形态完全不同:空心环状ν_{s2}相 干辐射是来自于四波混频过程,故要求满足 位相匹配,但没有明显的阈值性,可在较低的 入射光强水平下出现;实心圆斑状ν_{s2}辐射是 来源于级联受激喇曼散射过程,有明显的阈 值性,只有较高的入射激励水平才出现。以 上结果,与我们用双光束激励方解石样品所 作的 CARS 与 CSRS 实验结果相一致^[33]。

4. 高阶相干喇曼辐射圆环

图 2(d) 是当入射光能进一步提高到大于 2E₀ 并适当延长曝光时间条件下,通过宽带红色滤光片拍得的近场图照片,在外围出现了较弱的双线状深红色圆环;光谱分光测

图 2 不同入射光能下方解石晶体相干喇曼辐射的近场图照片

量表明,它们均对应着前向三级斯托克斯相 干辐射成分($\lambda_{s3}=643.5$ nm)。图2(e)为在与 图2(d)相同入射条件下通过宽带蓝色滤光片 拍得的近场图照片;其中心圆斑主要是透过 滤光片的剩余的 λ_0 光;其外第一个圆环为一级 反斯托克斯相干喇曼辐射($\lambda_{as1}=502.9$ nm); 再外的第二个圆环(实际上隐约可见由邻近 的双线所组成)为二级反斯托克斯相干喇曼 辐射($\lambda_{as2}=476.9$ nm);最外面第三个圆环为 三级反斯托克斯相干辐射($\lambda_{as3}=453.4$ nm)。 以上两图中所记录到的各级环状相干喇曼辐 射显然均是由特定的四波混频过程产生的。

5. 四波混频过程的判断

我们曾就多种可能的四波混频过程和相 位匹配条件进行了分析和计算。表1给出了 在λω=532 nm 入射光作用下,方解石晶体 各级相干喇曼辐射的波长、折射率(o光)和 波矢模量的数值。其中波长是用光谱分光方 法测量的,折射率是根据文献中给出的值然

阶次	波 长 入 (nm)	波数 1/λ (cm ⁻¹)	折射率 (o 光) ⁿ o	波矢模 量/2π n ₀ /λ
A83 3	453.4	22055	1.6726	36889
AS_2	476.9	20969	1.6694	35006
AS_1	502 .9	19883	1.6660	33125
也带我这个问言	532.0	18797	1.6629	31258
图形成181	564.6	17712	1.6601	29404
31 1 S2 1 11 3	601.5	16626	1.6576	27559
S3	643.5	15540	1.6550	25719

表1 方解石各阶相干喇曼辐

后用内插法确定的。通过与实验结果相互对 照,最后确定在本实验条件下,共有五种四波 混频过程对所观察记录到的环状相干喇曼辐 表 2 方解石样品不同阶次相干喇曼辐射 圆环角半径的理论计算值与实 验测量值 (测量误差<5%)

The second second	and the second second second second	the second s	and the second se
阶环次	波矢组合方式	角半径 计算值	角半径 测量值
S2环	$egin{aligned} egin{aligned} eta_0+eta_{s1}=eta_{cs1}+eta_{s2}\ & & & & & & & & & & & & & & & & & & &$	1.69°	1.68°
内环	$2k_{s2} = k_{s1} + k_{s3}$ [[A] 3(c)]	2.52°	2.56°
83 外环	$k_0 + k_{s1} = k_{as2} + k_{s3}$ [$\boxtimes 3(b)$]	3.05°	2.90°
AS1 环	$k_0+k_{s1}=k_{as1}+k_{s2}$ [图 3(a)]	1.41°	1.45°
内环 <i>AS</i> 2 外环	$k_0 + k_{s1} = k_{as2} + k_{s3}$ [$\boxtimes 3(b)$]	2.24°	2.21°
	$2\boldsymbol{k}_{as1} = \boldsymbol{k}_{as2} + \boldsymbol{k}_0$ [\Box 3(d)]	2.67°	2.63°
AS3 环	$2k_{as2} = k_{as3} + k_{as1}$ [\mathbb{S} 3(e)]	3.08°	3.28°

射有贡献,它们所对应的波矢组合方式和匹 配角条件如图3所示。其中图3(a)和(b)的 共同特点,是以入射光(波矢为 ko 和由所产 生的前向一级斯托克斯受激散射光(波矢为 ksi)的共线作用为基础,通过在样品介质内引 起的差频喇曼共振增强的三次非线性电极化 波的相干激发,导致出现 ksi ksi 以及 kssi, ksi 相干辐射环;图3(c)、(d)和(e)的共同特 点是在已经产生的环状相干辐射的基础上, 通过级联四波混频过程(与 CARS 或 CSRS 相类似的过程)而产生更高级次的环状相干 喇曼辐射。还有一些在图3中未列出的可能

图 3 产生各阶相干喇曼辐射环的波矢组合 和匹配条件(oz 为中心入射方向) (a) 产生 AS₁ 和 S₂ 环,(b) 产生 A₁S₂ 和 S₃ 环,(c) 产生 S₃ 环,(d) 产生 AS₂ 环, (e)产生 AS₃ 环

的四波混频过程,一方面它们在物理考虑上 出现的容易程度不如图3所列出的过程,另 一方面根据这些过程算出的匹配角数值与实 验观测值不相符合,因此有理由认为它们在 实际上并未成为主要的贡献。

表2分别给出了按照图3所列过程和表 1所列数据计算出的各阶次相干喇曼辐射圆 环半张角(角半径)的理论数值,同时作为对 照亦给出了按近场图分布确定的圆环半张角 的实测数值。从表2所列数值的对比中可看 出,在实验测量误差范围内(<5%),理论计 算值与实验测量值符合程度较好。

参考文献

[1] Y. R. Shen; Light Scattering in Solids, Topics in Applied Physics, 8, p. 275~324;
《激光物理学》,上海人民出版社, 1975 年版, p 293 ~302.

- [2] 刘颂豪; 《激光》, 1982, 9, No. 10, 678.
- 赫光生; 《激光》, 1982, 9, No. 10, 679.

[3] 刘颂豪等; «物理学报», 1982, 31, No. 3, 323~334

赫光生等; 《中国激光》, 1984, 11, No. 2, 96~ 99